Multiple-rank modification of symmetric eigenvalue problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Rank-one Modification of the Symmetric Eigenvalue Problem

Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteratio...

متن کامل

Nonlinear Low Rank Modification of a Symmetric Eigenvalue Problem

This paper studies existence and uniqueness results and interlacing properties of nonlinear modifications of small rank of symmetric eigenvalue problems. Approximation properties of the Rayleigh functional are used to design numerical methods the local convergence of which is quadratic or even cubic. Numerical examples demonstrate their efficiency.

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

Symmetric Eigenvalue Problem: Tridiagonal Reduction

Our ultimate goal in this project is to solve the symmetric eigenvalue problem on symmetric multiprocessor machines more quickly than existing implementations. In order to achieve this goal, we have chosen to implement an improved multithreaded version of a specific phase of the current best algorithmic approach, namely the reduction of a full symmetric matrix to banded form using two-sided ort...

متن کامل

The symmetric eigenvalue complementarity problem

In this paper the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed. It is shown that the symmetric (EiCP) is equivalent to finding an equilibrium solution of a differentiable optimization problem in a compact set. A necessary and sufficient condition for solvability is obtained which, when verified, gives a convenient starting point for any gradient-ascent loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MethodsX

سال: 2018

ISSN: 2215-0161

DOI: 10.1016/j.mex.2018.01.001